Keratoconus Articles

Corneal collagen cross-linking with riboß avin and ultraviolet – A light for keratoconus: Results in Indian eyes

Aim : To assess the results of corneal collagen cross-linking with riboß avin using ultraviolet – A light for keratoconus at one year in Indian eyes.

Materials and Methods : Sixty-eight eyes of 41 patients with progressive keratoconus were included in this retrospective study. All eyes completed was 12 months of follow-up and 37 eyes had a one-year follow-up. The maximum follow-up was 16 months. Ocular examinations including refraction, best corrected visual acuity (BCVA), corneal topography, were recorded at each visit.

Results : The mean age was 16.9 ± 3.5 years (range 12-39 years) and the mean follow-up was 10.05 ± 3.55 months (range six to 16 months). Thirty seven eyes with a follow-up of at least 12 months were analyzed. The preoperative values on the day of treatment were compared with postoperative values of the 12-month examination. This showed that BCVA improved at least one line in 54% (20/37) of eyes and remained stable in 28% (10/37) of eyes (P=0.006). Astigmatism decreased by a mean of 1.20 diopter (D) in 47% (17/37) of eyes (P=0.005) and remained stable (within ± 0.50 D) in 42% (15/37) of eyes. The K value of the apex decreased by a mean of 2.73 D in 66% (24/37) of eyes (P=0.004) and remained stable (within ± 0.50 D) in 22% (8/37) of eyes. The maximum K value decreased by a mean of 2.47 D in 54% (20/37) of eyes (P=0.004) and remained stable (within ± 0.50 D) in 38% (14/37) of eyes. Corneal Wavefront analysis revealed that spherical and higher-order aberrations did not show signiÞ cant variations in the follow-up period. The coma component showed a very signiÞ cant reduction at six months aft er treatment and persisted throughout the follow-up period (P=0.003).

Conclusion : he results show a stabilization and improvement in keratoconus aft er collagen cross-linking in Indian eyes. This suggests that it is an eff ective treatment for progressive keratoconus.

Key words : Collagen cross-linking, cornea, progressive keratoconus, riboß avin, ultraviolet A Indian J Ophthalmol: 2009;57:111-114.

Keratoconus is characterized by the development of a nonin ß ammatory ectasia of the axial or peri-axial region of thecornea and is usually bilateral. Its incidence in the generalpopulation is reported to be about one in 2000.[1] Incidences of one in 600 to one in 420 seem more in keeping with the current diagnostic capacity.[2] Because of the young age of patients, keratoconus Mumbai oft en has a signiÞ cant negative eff ect on the quality of life.[3]

Two chief mechanisms for the development of keratoconus have been put forward. One proposes that ectasia is closely associated with tissue degradation or reduced maintenance,[4] whereas the other suggests that it is due to slippage between collagen fibrils,[5] with no overall tissue loss. Surgical dissection of the corneal stroma is not resistance-free, even in the posterior region where there is less anterior-posterior interweave, suggesting that there are other elements that bind the collagen lamellae together.[6]Part of this resistance.

is due to interactions between the collagen Þ brils (e.g., Type III and heteromeric Type I and V collagens) and other matrix proteins, such as the proteoglycans,[7,8]and Type VI collagen.[9]

In addition, diff erences in keratocyte surface components, cell morphology and cell-matrix interactions have all been reported in keratoconus.[10,11] If this “interÞ brillar glue” were weakened,then lamellae (or collagen bundles) would have the potential to tear apart.[5] The central and inferior regions of the cornea are likely to be aff ected preferentially (the main region of cone formation), since interlamellar cohesive strength is at a minimum in that area in normal corneas.[12,13] The technique of corneal collagen cross-linking has beenused to at least temporarily block progression of keratoconus in the progressive phase.[14] Cross-linking ‘freezes’, that is, it arrests the further progression of the corneal collagen thinning / redistribution that is otherwise progressive in keratoconus stromal collagen, increasing the biomechanical stability of the cornea.[15]

The technique of corneal collagen cross-linking consists of photopolymerization of stromal Þ bers by the combined action of a photosensitizing substance (riboß avin or vitamin B2) and ultraviolet A rays (UVA) from a solid-state UVA source.[14] Photopolymerization increases the rigidity of corneal collagen and its resistance to keratectasia.[16] The cross-linking eff ect is not distributed homogenously over the corneal depth. Thestiff ening eff ect is concentrated in the anterior 200 to 300 microns of the cornea due to the high absorption of UV light in this area.[16] The aim of this retrospective nonrandomized open study was to show the results of riboß avin UVA-induced corneal collagen cross-linking in an Indian cohort of patients aff ected by progressive keratoconus, aft er one year of follow-up. To our knowledge, this is the Þ rst retrospective nonrandomized open label study from the Indian subcontinent.

Materials and Methods

This retrospective nonrandomized open label study with consecutive recruitment comprised patients with the following inclusion criteria:

  • Progressive keratoconus
  • Corneal thickness of at least 400 µm
  • No slit-lamp evidence of corneal scarring

Progression was defined as an increase in maximum keratometry (K) of 1.00 diopter (D) in one year (used from other studies of Caporossi et al., measured in the topographyimage as the steepest point), patient reports of deteriorating best corrected visual acuity (BCVA)[17,18] (excluding other possible non-cornea-related reasons for deterioration), or the need for new contact lens Þ tt ing more than once in two years.[19] Ultrasonic pachymetry was used with 9 points being measured in each eye (PalmScan, Micro Medical Technologies, USA). The apex was measured by collating the cone location magnitude index (CLMI) (Keratron Scout, Optikon, Italy)) from the corneal topography (Keratron Scout, Optikon, Italy). The CLMI is a soft ware built into the Keratron Topographer, and is based on the concept of locating the center of the cone and its magnitude. The algorithm is designed to determine the steepest 2-mm diameter circle within the central 8 mm of the topography. The area-corrected average of all points outside of the circle is ubtracted from the corrected average of all the points within the circle. This is repeated for the circle 180° away. The results are compared to decide if the area is a cone.

All patients or the legal guardians (in case of patients less than 18 years of age) provided informed consent aft er receiving a detailed description of the nature of the treatment. Patientsless than 18 years of age were also included in our study as the occurrence of keratoconus Mumbai is seen at a much earlier age and with rapid progression in the Indian subcontinent.[20] This study was performed in the city of Mumbai in western India.

The cross-linking was performed in the daycare facility of the Clear Vision Eye Center, Mumbai, India. Aft er topical anesthesia of propracaine hydrochloride 0.5% eye drops was administered, the epithelium was removed using a blunt spatula in a 9.0 mm diameter area. This was to ensure that the riboß avin penetrated the stroma and that a high level of UVA absorption was achieved. As a photosensitizer,0.1% riboß avin solution was applied to the cornea every 5 min for 25 min before the irradiation to allow suffi cient saturation of the stroma.[20] Next, an 8.0-mm diameter of central cornea was irradiated with UVA light with a wavelength of 370 nm and an irradiance of 3 mW/cm2. The CBM (Caporossi, Baiocchi,Mazzott a) X Linker (CSO, Italy), was used as the UVA radiation source. This crosslinker has Þ ve pre-focused diodes with a LED divergence of 10° to provide a homogenous UVA radiation. During the 25 min ofirradiation,[2] drops of 0.1% riboß avin solution (Ricrolin, Sooft Italia) were applied to the cornea every 5 min to sustain the necessary concentration of the riboß avin.

Aft er the treatment, the eyes were patched for 24 h. On removal of the patches the patients were instructed to use 0.5% moxiß oxacin eye drops (Alcon Laboratories, India), 1% prednisolone acetate eye drops (Allergan India) and tears naturale II (Alcon Laboratories, India) for a period of one week. All drops were recommended for use at four times daily.

Follow-up examinations were performed on day 1 and 3 or until complete re-epithelialization. Subsequent examinations were at one, three, six, and 12 months and then advised annually. At each examination, refraction, BCVA (Snellen Vision Charts) with glasses or with contact lenses, corneal topography (Keratron Scout, Optikon, Italy), central corneal thickness (CCT) (PalmScan, Micro Medical Technologies, USA), and intraocular pressure (IOP) (Goldmann applanation tonometer, Haag Streit, Switzerland) were recorded.

To quantify the cross-linking eff ect, the maximum K value of the apex, maximum and minimum K values in the 3.0 mm zone topography, astigmatism, and BCVA were recorded.

The changes were estimated by subtracting each parameter at the respective follow-up examination from the records prior to the day of cross-linking. Statistical evaluation was performed by analysis of variance (ANOVA) using JMP 4.0 soft ware.

Results : Only patients with a minimum follow-up of 12 months were included in the study. Thirty-seven eyes of 25 patients with a mean age of 16.9± 6.35 years (range 12-39 years) were included. The follow-up ranged from 12 to 16 months. The preoperative apex K value determined with the CLMI was 64.79 ± 7.22 D, the mean maximum keratometry was 53.26 ± 5.93 D (The apex values were determined using the CLMI method used in Keratron Scout, Optikon, Italy and the maximum K was computed using the Simulated K values method. Thus the apex is higher than maximum K), the mean astigmatism was 7.24 ± 4.67 D (this obtained from the topography derived K). BCVA was 0.34± 0.30 (vision was recorded by Snellen’s and converted to decimal format for statistical calculations). Ultrasonic pachymetery (apex as determined by the topography and approximated to the eye) (Palmscan, Micromed Technologies, USA) was done in all eyes preoperatively to assess suitability and was 478 ± 45 µm.

An evaluation of 37 eyes in which stable parameters were recorded and the preoperative values on the day of treatment were compared with postoperative values of the 12-month examination showed that BCVA improved at least one line in 54% (20/37) of eyes and remained stable in 28% (10/37) of eyes (P=0.006). Astigmatism decreased by a mean of 1.20 D in 47% (17/37) of eyes (P=0.005) and remained stable (within ± 0.50 D) in 42% (15/37) of eyes. The K value of the apex decreased by a mean of 2.73 D in 66% (24/37) of eyes (P=0.004) and remained stable (within ± 0.50 D) in 22% (8/37) of eyes. The maximum K value decreased by a mean of 2.47 D in 54% (20/37) of eyes (P=0.004) and remained stable (within ± 0.50 D) in 38% (14/37) of eyes [Table 1].

Corneal wave front surface aberrometry according to Keratron Scout software (Optikon, Italy) was also used.

Agrawal: Corneal cross linking for keratoconus in Indian eyes

Table 1: Mean Change in values after cross-linking

Mean ± SD

Follow-up (months)Pachymetry (μm)K max Apex (D)K max (D)Astigmatism (D)Visual
610 ± 7.5-2.68 ± 8.3-1.3 ± 4.33-0.7 ± 3.98-0.04 ± 0.24
12 – 2.73 ± 7.95-2.47 ± 3.89-1.2 ± 4.02-0.09 ± 0.24

Spherical and higher-order aberrations did not show signiÞ cant variations in the follow-up period, whereas the coma component showed a very signiÞ cant reduction at six months [Fig. 1] with respect to before the operation and persisted throughout the follow-up period (P=0.003).


Our study reports on a cohort from the Indian subcontinent. To our knowledge this is the Þ rst report of its kind. This study like other studies from Europe shows that corneal collagen crosslinking with riboß avin is eff ective in stopping the progression of keratoconus by ’’freezing” the cornea.[2,14,19] A good safety proÞ le has been documented.[21] The postoperative change in the keratometry at the apex of the cone (K apex) showed a mean decrease of 2.68 at six months and continued towards reduction at 12 months.

The success of cross-linking treatment in keratoconus is not surprising, because a signiÞ cantly reduced tensile strength has been measured biomechanically [22] in keratoconus and a signiÞ cant increase in corneal rigidity has been measured in porcine and rabbit corneas treated by riboß avin/UVA using quantitative biomechanical stress strain measurements.[16,17] Caporossi et al.,[2] showed in human eyes that refractive results showed a reduction of about 2.5 D in the mean spherical equivalent, topographically conÞ rmed by the reduction in mean K. Results of surface aberrometric analysis showed improvement in morphologic symmetry with a signiÞ cant reduction in coma aberrations.[2] In addition, Raiskup- Wolf et al.,[19] who followed up patients up to six years and reported on a larger cohort of patients too concluded that the improvement in vision aft er cross-linking is caused by a decrease in astigmatism and corneal curvature as well as by topographical homogenization of the cornea as a result of the increased rigidity in the cross-linked cornea. In addition, the Þ tt ing of contact lenses is improved.[19]

This leads to an increase in both, the unaided visual acuity and BCVA, not only through astigmatism improvement (K readings reduction) but also in terms of corneal symmetry indices improvement aft er cross-linking. Another possible explanation of cross-linking success, especially concerning keratoconus stabilization, is the new more compact collagen lamellar structure aft er corneal cross-linking as demonstrated in recent studies by Wollensak[23] and Mazzott a.[24] It is important to note that in this cohort of patients we did not come acrossany complications.

The importance of cross-linking lies in the fact that it is a low-invasive, outpatient procedure. It achieves a result so far not off ered by any other modality of treatment. This includes conservative approaches like contact lenses and surgical options like intracorneal rings, and keratoplasty. Keratoplasty is oft en the only choice in many patients. In epidemiological studies up to 21% of patients have ended up needing keratoplasty

for visual rehabilitation.[25,26] The problems for a treatment like keratoplasty for keratoconus in a country like India are compounded by lack of adequate tissue availability. Also, it is the Þ rst treatment option for patients with keratoconus that off ers a possibility of mild regression in the condition. Thus cross linking helps in various ways: improves vision, helps regression of disease, stabilizes future progression, and thus probably delays or avoids keratoplasty in a given patient. It would require a longer study to adequately validate these comments.

It thus also has a signiÞ cant psychosocial value. Keratoconus being a disease of the young causes significant loss of productivity and has a disproportionate impact on the quality of life. Any procedure that can improve the quality of life in a given disease deserves a close look. This study though the Þ rst from the Indian subcontinent has several limitations. Being retrospective in nature the data bias is a possibility. However, looking at various international studies published earlier this may not be a major deÞ cit. The numbers in our analysis are limited. A larger multicentric study for collagen crosslinking in keratoconus would be needed to derive stronger conclusions.

At present, keratoconus is not curable. However, crosslinking was able to stop its progression in our series of cases. We have shown improvement in the visual acuity in some casesdue to reduction in the irregular astigmatism.

Raiskup-Wolf et al.,[19] had two patients in their series who needed repeat treatment with cross-linking. However, these patients had acute exacerbation of neurodermatitis. This study also reported the longest series of patients followed from three to six years aft er treatment. Thus, it is important to cross-link corneas with progressive keratoconus as early as possible. In the future, we may be able to further improve vision by combining the cross-linking procedure with procedures such as intracorneal ring implantation.[27] and topography-guided photorefractive keratectomy.


1Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42:297-319.
2Caporossi A, Biaocchi S, Mazzota C, Traversi C, Caporossi T. Parasurgical therapy for keratoconus by riboß avin-ultraviolet type A rays induced cross-linking of corneal collagen: Preliminary refractive results in an Italian Study. J Cataract Refract Surg 2006;32:837-45.
3Kymes SM, Walline JJ, Zadnik K, Gordon MO. Quality of life in keratoconus: The Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Am J Ophthalmol 2004;138:527-35.
4Kenney MC, Brown DJ, Rajeev B. Everett Kinsey lecture: The elusive causes of keratoconus: A working hypothesis. CLAO J 2000;26:10-3.
5Polack F. Contribution of electron microscopy to the study of corneal pathology. Surv Ophthalmol 1976;20:375-414.
6Maurice DM. Some puzzles in the microscopic structure of the stroma. J Refract Surg 1996;12:677-83.
7Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 2005;46:1948.
8Scott JE, Haigh M, Proteoglycan-type I collagen Þ bril interactions in bone and non-calcifying tissues. Biosci Rep 1985;5:71-81.
9Hirano K, Kobayashi M, Kobayashi K, Hoshino T, Awaya S. Experimental formation of 100 nm periodic Þ brils in the mouse corneal stroma and trabecular meshwork. Invest Ophthalmol Vis
Sci 1989;30:869-74.
10Rock ME, Moore MN, Anderson JA, Binder PS. 3-D computer models of human keratocytes. CLAO J 1995;21:57-60.
11Yue BY, Baum JL, Smith BD. IdentiÞ cation of collagens synthesized by cultures of normal human corneal and keratoconus stromal cells. Biochem Biophys Acta 1983;755:318-25
12Smolek MK. Interlamellar cohesive strength in the vertical meridian of human eye bank corneas. Invest Ophthalmol Sci 1993;34:2962-9.
13Smolek MK, Beekhuis WH. Collagen Þ bril orientation in the human corneal stroma and its implications in keratoconus. Invest Ophthalmol Vis Sci 1997;38:1289-90.
14Wollensak G, Spoerl E, Seiler T. Riboß avin/ultraviolet-A-induced collagen cross-linking for the treatment of keratoconus in Mumbai. Am J Ophthalmol 2003;135:620-7.
15Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage aft er riboß avin-ultraviolet: A treatment in the rabbit. J Cataract Refract Surg 2003;29:1786-90.
16Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas aft er riboß avin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 2003;29:1780-5.
17Kohlhaas M, Spoerl E, Schilde T, Unger G, Witt ig C, Pillunat LE. Biomechanical evidence of the distribution of cross-links in corneas treated with riboß avin and ultraviolet A light. J Cataract
Refract Surg 2006;32:279-83.
18Suzuki M, Amano S, Honda N, Usui T, Yamagami S, Oshika T. Longitudinal changes in corneal irregular astigmatism and visual acuity in eyes with keratoconus. Jpn J Ophthalmol 2007;51:265-9.
19Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE: Collagen crosslinking with riboß avin and ultraviolet-A light in keratoconus: Long-term results. J Cataract Refract Surg 2008;34:796-801.
20Saini JS, Saroha V, Singh P, Sukhij a J, Jain AK. Keratoconus in Asian eyes at a tertiary eye care facility. Clin Exp Optom 2004;87:97-101.
21Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVAribo ß avin cross-linking of the cornea. Cornea 2007;26:385-9.
22Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 1980;31:435-41.
23Wollensak G, Redl B. Gel eletrophoretic analysis of corneal collagen aft er photodynamic cross-linking treatment. Cornea 2008;27:353-6.
24Mazzott a C, Traversi C, Baiocchi S, Caporossi O, Bovone C, Sparono MC, et al. Corneal healing aft er riboß avin ultraviolet-a collagen cross-linking determined by confocal laser scanning microscopy in vivo: Early and late modiÞ cation. Am J Ophthalmol 2008;146:527-53.
25Tuft SJ, Moodaley LC, Gregory WM, Davison CR, Buckley RJ. Prognostic factors for the progression of keratoconus. Ophthalmology 1994;101:439-47.
26Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 1986;101:267-73.
27Chan CC, Sharma M, Boxer Wachler BS. Eff ect of inferior segment Intacs with and without C3-R on keratoconus. J Cataract Refract Surg 2007;33:75-80.